Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(16): 5356-5368, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37506288

RESUMO

We present NEXMD version 2.0, the second release of the NEXMD (Nonadiabatic EXcited-state Molecular Dynamics) software package. Across a variety of new features, NEXMD v2.0 incorporates new implementations of two hybrid quantum-classical dynamics methods, namely, Ehrenfest dynamics (EHR) and the Ab-Initio Multiple Cloning sampling technique for Multiconfigurational Ehrenfest quantum dynamics (MCE-AIMC or simply AIMC), which are alternative options to the previously implemented trajectory surface hopping (TSH) method. To illustrate these methodologies, we outline a direct comparison of these three hybrid quantum-classical dynamics methods as implemented in the same NEXMD framework, discussing their weaknesses and strengths, using the modeled photodynamics of a polyphenylene ethylene dendrimer building block as a representative example. We also describe the expanded normal-mode analysis and constraints for both the ground and excited states, newly implemented in the NEXMD v2.0 framework, which allow for a deeper analysis of the main vibrational motions involved in vibronic dynamics. Overall, NEXMD v2.0 expands the range of applications of NEXMD to a larger variety of multichromophore organic molecules and photophysical processes involving quantum coherences and persistent couplings between electronic excited states and nuclear velocity.

2.
J Phys Chem Lett ; 14(26): 6001-6008, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37347959

RESUMO

Dinoflagellate luciferin bioluminescence is unique since it does not rely on decarboxylation but is poorly understood compared to that of firefly, bacteria, and coelenterata luciferins. Here we computationally investigate possible protonation states, stereoisomers, a chemical mechanism, and the dynamics of the bioluminescence intermediate that is responsible for chemiexcitation. Using semiempirical dynamics, time-dependent density functional theory static calculations, and a correlation diagram, we find that the intermediate's functional group that is likely responsible for chemiexcitation is a 4-member ring, a dioxetanol, that undergoes [2π + 2π] cycloreversion and the biolumiphore is the cleaved structure. The simulated emission spectra and luciferase-dependent absorbance spectra agree with the experimental data, giving support to our proposed mechanism and biolumiphore. We also compute circular dichroism spectra of the intermediate's four stereoisomers to guide future experiments in differentiating them.


Assuntos
Dinoflagellida , Luciferina de Vaga-Lumes , Luciferina de Vaga-Lumes/química , Luciferinas , Estereoisomerismo , Medições Luminescentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...